MINGQIU DAI
Professor
Lab: (+86) 2787287603
E-mail: mingqiudai@mail.hzau.edu.cn
A219 National Key Laboratory of Crop Genetic Improvement ,
Huazhong Agricultural University, Wuhan, Hubei, China 430070
EDUCATION AND WORK BACKGROUND
2013.4-present Professor. Huazhong Agricultural University, Wuhan, HB 430070, China
2012.6-2013.3 Associate Research Scientist in MCDB, Yale University, New Haven, CT 06520-8104 USA. Research: Hormone signaling and plant developmental.
2009.7-2012.6 Postdoctoral researcher with Dr. Haiyang Wang and Dr. Xing Wang Deng at MCDB, Yale University, New Haven, CT USA. Research: Hormones, Phosphatases and plant developmental.
2007.6-2009.7 Postdoctoral researcher with Dr. Haiyang Wang at the Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY USA. Research: light signaling and plant developmental.
2000.9-2007.3 College of life science and technology, Huazhong Agricultrural University. Wuhan, China. Major: Biochemistry and molecular biology. Research: Hormones, transcription factors and plant developmental.
1996.9-2000.7 B.S, College of Fisheries, Huazhong Agricultrural University. Wuhan, China. Major: Fishery
Research Field
In the era of increasing food demand along with global population surge and the looming global climate crisis, how plants adapt to future environmental changes is a fundamental question for world agriculture. Our group are focusing on studying crop environmental adaptation, especially maize abiotic stress biology. We use genetic, molecular and bioinformatics approaches to reveal the genetic basis and/or molecular mechanisms of maize abiotic stress responses/tolerance. Our goals are to identify genetic loci and/or favorable alleles for genetic engineering and to develop molecular makers for stress-tolerant maize breeding.
Service for the plant community
Reviewer: for different journals such as Genome Biology, Nature Plants, Plant Cell, Molecular Plant, New Phytologist, Plant Journal, Plant Physiology, Plant Biotechnology Journal, BMC genomics, BMC Plant Biology, Plant Science etc.
Guest editor: Frontiers in Plant Science (2018), International Journal of Molecular Sciences (2020-2022)
Publications ( # corresponding author)
1. Sun X, Xiang Y, Dou N, Zhang H, Pei S, Franco AV, Menon M, Monier B, Ferebee T, Liu T, Liu S, Gao Y, Wang J, Terzaghi W, Yan J, Hearne S, Li L#, Li F#, Dai M#. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat Biotechnol. 2022. doi: 10.1038/s41587-022-01470-4.
2. Liang X, Xu X, Wang Z, He L, Zhang K, Liang B, Ye J, Shi J, Wu X, Dai M, Yang W#. StomataScorer: a portable and high-throughput leaf stomata trait scorer combined with deep learning and an improved CV model. Plant Biotechnol J. 2022. 20(3):577-591.
3. Zhang P, Dai M#. CircRNA: a rising star in plant biology. J Genet Genomics. 2022. S1673-8527(22)00155-2.
4. Zhang F, Wu J, Sade N, Wu S, Egbaria A, Fernie AR, Yan J, Qin F, Chen W#, Brotman Y#, Dai M#. Genomic basis underlying the metabolome-mediated drought adaptation of maize. Genome Biol. 2021. 22(1):260.
5. Wu X, Feng H, Wu D, Yan S, Zhang P, Wang W, Zhang J, Ye J, Dai G, Fan Y, Li W, Song B, Geng Z, Yang W, Chen G, Qin F, Terzaghi W, Stitzer M, Li L, Xiong L, Yan J, Buckler E, Yang W#, Dai M#. Using high-throughput multiple optical phenotyping to decipher the genetic architecture of maize drought tolerance. Genome Biol. 2021. 22(1):185.
6. Zhang H, Sun X, Dai M#. Improving crop drought resistance with plant growth regulators and rhizobacteria: Mechanisms, applications, and perspectives. Plant Commun. 2021. 3(1):100228.
7. Qin X, Tian S, Zhang W, Zheng Q, Wang H, Feng Y, Lin Y, Tang J, Wang Y, Yan J, Dai M, Zheng Y, Yue B#. The main restorer Rf3 of maize S type cytoplasmic male sterility encodes a PPR protein that functions in reduction of the transcripts of orf355. Mol Plant. 2021. 14(12):1961-1964.
8. Zhang H, Xiang Y, He N, Liu X, Liu H, Fang L, Zhang F, Sun X, Zhang D, Li X, Terzaghi W, Yan J, Dai M#. Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-Like Nucleotidase Improves Drought Tolerance of Arabidopsis and Maize. Mol Plant. 2020. pii: S1674-2052(20) 30035-6.
9. Yu X, Dong J, Deng Z, Jiang Y, Wu C, Qin X, Terzaghi W, Chen H, Dai M# and Deng XW#. (2019). Arabidopsis PP6 phosphatases dephosphorylate PIF proteins to repress photomorphogenesis. PNAS. 116(40):20218-20225
10. He Z, Wu J, Sun X, Dai M#. (2019). The maize clade A PP2C phosphatases play critical roles in multiple stress responses. Int J Mol Sci 20(14). pii: E3573
11. Zhang P, Fan Y, Sun X, Chen L, Terzaghi W, Bucher E, Li L, Dai M#. (2019). A large-scale circular RNA profiling reveals universal molecular mechanisms responsive to drought stress in maize and Arabidopsis. Plant J. 98(4):697-713.
12. Luo X, Wang B, Gao S, Zhang F, Terzaghi W, Dai M#. (2019). Genome-wide association study dissects the genetic bases of salt tolerance in maize seedlings. J Integr Plant Biol. 61(6):658-674.
13. He Z, Zhong J, Sun X, Wang B, Terzaghi W, Dai M#. (2018). The maize ABA receptors ZmPYL8, 9 and 12 facilitate plant drought resistance. Front Plant Sci. 9:422.
14. Chen L, Zhang P, Fan Y, Lu Q, Li Q, Yan J, Muehlbauer GJ, Schnable PS, Dai M, Li L#. (2018). Circular RNAs mediated by transposons are associated with transcriptomic and phenotypic variation in maize. New Phytol. 217:1292-1306.
15. Duan L, Han J, Guo Z, Tu H, Yang P, Zhang D, Fan Y, Chen G, Xiong L, Dai M, Williams K, Corke F, Doonan JH, Yang W#. Novel Digital Features Discriminate Between Drought Resistant and Drought Sensitive Rice Under Controlled and Field Conditions. Front Plant Sci. 2018. 9:492.
16. Xiang Y, Sun X, Gao S, Qin F, Dai M#. (2017). Deletion of an endoplasmic reticulum stress response element in a ZmPP2C-A gene facilitates drought tolerance of maize seedlings. Mol Plant. 10:456-469.
17. Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou DX, Yang W, Zhao Y#. (2015). The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci. 236:146-56.
18. Dai M, Xue Q, Mccray T, Chen F, Margavage K, Lee J, Nezames C, Guo L, Terzaghi W, Wan J, Deng XW, Wang H#. The Arabidopsis PP6 Phosphatase Regulates ABI5 Phosphorylation and ABA Signaling. The Plant Cell. 2013. 25(2):517-34.
19. Dai M, Terzaghi W, and Wang H#. Multifaceted roles of Arabidopsis PP6 phosphatase in regulating cellular signaling and plant development. Plant Signaling & Behavior. 2013. 8(1).
20. Dai M, Zhang C, Kania U, Chen F, Xue Q, Mccray T, Li G, Qin G, Wakeley M, Terzaghi W, Wan J, Zhao Y, Xu J, Friml J, Deng X, and Wang H#. A PP6-type phosphatase holoenzyme directly regulates PIN phosphorylation and auxin efflux in Arabidopsis. The Plant Cell. 2012. 24(6): 2497-514.
21. Sassi M, Lu Y, Zhang Y, Wang J, Dhonukshe P, Blilou I, Dai M, Li J, Gong X, Jaillais Y, Yu X, Traas J, Ruberti I, Wang H, Scheres B, Vernoux T, Xu J#. COP1 mediates the coordination of root and shoot growth by light through modulation of PIN1- and PIN2-dependent auxin transport in Arabidopsis. Development. 2012. 139(18): 3402-12.
22. Chen F, Shi X, Chen L, Dai M, Zhou Z, Shen Y, Li J, Li G, Wei N, Deng XW#. Phosphorylation of FAR-RED ELONGATED HYPOCOTYL1 Is a Key Mechanism Defining Signaling Dynamics of Phytochrome A under Red and Far-Red Light in Arabidopsis. The Plant Cell. 2012. 24(5): 1907-20
23. Li G, Siddiqui H, Teng Y, Lin R, Wan XY, Li J, Lau OS, Ouyang X, Dai M, Wan J, Devlin PF, Deng XW, Wang H#. Coordinated transcriptional regulation underlying the circadian clock in Arabidopsis. Nat Cell Biol. 2011. 13(5): 616-22.
24. Lee JH, Yoon HJ, Terzaghi W, Martinez C, Dai M, Li J, Byun MO, Deng XW#. DWA1 and DWA2, two Arabidopsis DWD protein components of CUL4-based E3 ligases, act together as negative regulators in ABA signal transduction. The Plant Cell. 2010. 22(6): 1716-32.
25. Zhao Y, Hu Y, Dai M, Huang L, Zhou DX#. The WUSCHEL-Related Homeobox Gene WOX11 Is Required to Activate Shoot-Borne Crown Root Development in Rice. The Plant Cell. 2009. 21(3): 736-48.
26. Park HJ, Ding L, Dai M, Lin R#, Wang H. Multisite phosphorylation of Arabidopsis HFR1 by casein kinase II and a plausible role in regulating its degradation rate. J Biol Chem. 2008. 283(34):23264-73.
27. Dai M, Hu Y, Ma Q, Zhao Y and Zhou DX#. Functional analysis of rice HOMEOBOX4 (Oshox4) gene reveals a negative function in gibberellin responses. Plant Mol Biol. 2008. 66(3): 289-301.
28. Dai M, Hu Y, Zhao Y, Liu H and Zhou DX#. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development. Plant Physiol. 2007. 144(1): 380-90.
29. Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q and Zhou DX#. The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol. 2007. 144(1): 121-33.
30. Dai M, Hu Y, Zhao Y and Zhou DX#. Regulatory Networks Involving YABBY Genes in Rice Shoot Development. Plant Signaling & behavior. 2007. 2(5): 399-400.
31. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L#. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS. 2006. 103(35): 12987-92.
Courses:
For undergraduate students: General Biology, Genetics
For graduated students: Advanced Genetics, Frontiers in Life Science
Graduate Recruitment:
Genetics, Developmental biology, Genomics, Biochemistry and Molecular Biology